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Background 

Every year, 500,000 patients suffer burn injuries requiring treatment in the United States
11

, of which the 

standard medical practice is the application of a skin graft to the burn site in order to lower the risk of 

infection and dehydration. Skin grafts are also used in the treatment of diabetic leg ulcers and various 

other skin defects such as venous ulcers and acute injuries
9
.  

Currently, skin grafts are made available via three major avenues: 

1. Transplants 

2. Synthetic skin 

3. Tissue-engineered skin 

Transplants 

Skin transplants have been used for over 150 years in clinical practice
7
. Autografts are transplants from 

other regions of the patient’s body, and are preferred because of a reduced risk of rejection and various 

other complications. Allografts on the other hand, are transplants from a skin donor, which leads to 

possible rejection or allergic reactions. However, this is still used in cases where large areas of the 

patient’s skin have been damaged or removal of skin from other portions of the patient is not viable. 

Figure 1 shows two common sites from which skin is harvested for transplants. Lastly, xenografts are 

where the skin is taken from an animal, usually pig tissue. It is used in the treatment of large wounds 

when no donor skin is available
2
.  

 

 

 

 

 

 

 

 

 

Synthetic skin 

Another alternative to living skin which has been used for skin grafts is the use of an artificial skin 

substitute. The most common of these consist of collagen matrices which serve to prevent infection and 

stop the tissue underneath from drying out. Some contain cytokines and growth factors which encourage 

re-epithelisation and vascularisation
1
 but this effect has not been well studied and there is little clinical 

data on re-epithelisation rates 
6
.  

Figure 1: Common skin graft harvesting sites for 

autograft and allograft transplants 

Source: http://www.biomed.brown.edu 
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Tissue engineered skin 

Advances in cell culture and tissue engineering have led to the development of tissue engineered skin 

grafts. These usually involve harvesting of cells which are then cultured and allowed to multiply and 

grow on a scaffold in order to form a skin substitute. Various companies have developed methods for 

doing this, and tissue engineered skin products are currently on the market for the treatment of burns and 

diabetic ulcers. Like transplants, the cells used can be harvested from the patients themselves, a donor, or 

from other species of animals
1
. In one product Epicel™, a skin biopsy is done to remove the epidermis 

which is then trypsinized and cultured in vitro. When cells have reached confluence they are harvested 

and attached to gauze dressing for use in a skin graft
5
. Figure 2 shows an illustration of another such 

method of producing a tissue engineered skin graft developed by Laboratoire D’Organogenese 

Experimentale in France.  

 

 

 

A major limitation in the culture of engineered tissues and organs is the ability to provide adequate 

oxygen to the growing cells after they have reached a certain thickness in the absence of vascularisation 

in vitro.  Fibroblasts have been shown to require a critical level of oxygen for the secretion and 

remodelling of collagen, required for the development of a skin graft
8
.   

Problem statement 

The rate of diffusion and consumption of oxygen are major limitations in the culture of cells for use in 

tissue engineered skin grafts. We aim to model in vitro oxygen diffusion and consumption in cultured 

fibroblasts in an experimental set up similar to that used for the production of tissue engineered skin 

grafts.  

Figure 2. Fibroblasts are suspended in a collagen solution which is allowed to polymerise. 

Keratinocytes are then seeded on top of the collagen matrix to create a skin equivalent.  

Source: http://www.loex.qc.ca/recherche.labos.lrgb.php?langue=2 
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Model and assumptions 

 

 

 

 

 

 

 

 

 

 

 

 

In order to study the combined effects of diffusion and consumption in tissue cultured cells, we have 

approximated the system as a homogenous layer of cells growing on the bottom of a tissue culture vessel 

with thickness L with diffusion in the x direction only. O2 concentration is constant at the surface of the 

culture through dissolution of atmospheric oxygen into the media or a constantly moving stream of 

oxygenated media while flux at the base of the layer if assumed to be 0 due to impermeability of the 

tissue culture vessel to oxygen. Oxygen is consumed by the cells based on Michaelis-Menten kinetics
3
 

and travels through the cell layer by diffusion only. For ease of modelling, we have also assumed that no 

proliferation occurs in the time span of the model and the oxygen consumption is independent of any 

other factors such as nutrient concentration. Lastly, we have also assumed that the initial concentration of 

oxygen throughout the cell layer is 0 at time t=0.  

The concentration of oxygen in the cell layer can thus be described by the equation 

         
  

  
= 𝐷

   

   
−

   

    
     (1) 

with initial and boundary conditions  

 

 

 

 x = 0 

x = L 

Figure 3. Diagrammatic representation of the model setup. The x-axis points downwards from 0 at the 

cell surface in contact with air to L at the interface between the cells and the culture vessel. Initial 

concentration of oxygen throughout is 0mM. Concentration at x=0 is c0, while flux at x=L is 0. 

𝐼.𝐶. : 𝑐 𝑥, 0 = 0 

𝐵.𝐶. 1: c 0, 𝑡 = 𝐶𝑜 

𝐵.𝐶. 2:
𝜕𝑐

𝜕𝑥
 𝐿, 𝑡 = 0 

𝑐 0, 𝑡 = 𝐶𝑜  

𝜕𝑐

𝜕𝑥
 𝐿, 𝑡 = 0 

𝑐 𝑥, 0 = 0 

Cell Layer of 
Thickness 𝐿 Direction of Oxygen Diffusion 
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where c is the concentration of oxygen, x is the distance from the surface, c0 is the concentration of 

oxygen at the surface, D is the diffusivity of oxygen in cells
4
, L is the total height of the cell layer, Vm is 

the maximum rate of oxygen consumption and Km is the concentration of oxygen at ½ Vm
10

. Values used 

in our model are given in Table 1. 

 

Parameter Value 

C0 0.2 [µmol/cm
3] 

D 6.6x10
-6 [cm

2
/s] 

L 0.02 [cm] 

Vm 0.059 [µM/s] 

Km 0.075 [µM] 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. List of parameters used and their values 
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Homogenous Solution (No consumption) 

  

  
=

   

         (2) 

First, we solved the homogenous equation without consumption in order to get an understanding of the 

diffusion profile of our system without the consumption term (Appendix A).  

Solution: 𝑐 𝑥, 𝑡 =  𝐶 − ∑
   

       
sin  

       

  
𝑥 𝑒  

       

  
     

      (3) 

Plotting the analytical solution to the homogenous equation in Matlab (Figure 4), we can see that oxygen 

diffuses into the cell layer and the oxygen concentration throughout the cell layer eventually reaches 

steady state c(x) = c0. This is to be expected because of the no flux condition on the other bound.  

 

 

 

 

Figure 4. Analytical solution of the homogenous PDE for the first 100 values of n. 
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Inhomogeneous PDE (Constant Oxygen Consumption) 

Analytical Solution 

 

  

  
= 𝐷

   

   −        (4) 

After solving the homogeneous PDE with inhomogeneous boundary conditions, we incorporated the 

consumption term into the equation. In order for this equation to be solvable analytically (Appendix B), 

we modelled oxygen consumption as a constant R, giving us the equation above (Equation 4). As an 

approximation, this would be true when c>>Km, hence 
   

    
   .  Thus, this model incorporates both 

the oxygen diffusion through the skin graft cell layer in addition to the oxygen consumption term. 

Solution: 

𝑐 𝑥, 𝑡 =  
 

  
𝑥 −

  

 
𝑥  𝐶  ∑   sin 

       

  
𝑥 𝑒   

       

  
    

      (5) 

The analytical solution was plotted in Matlab and is shown in figures 5 and 6. This solution demonstrated 

the effects of oxygen concentration throughout the cell layer when factoring in the constant oxygen 

consumption by the cells.  

 

 

Figure 5. Analytical solution of the inhomogenous PDE with consumption for the 

first 100 values of n. 
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This plot reveals the dynamics between oxygen diffusion and consumption. As diffusion is proportional 

to the rate of concentration change, it is initially rapid and oxygen travels about 0.004cm into the cell 

layer. However, the consumption of oxygen quickly depletes it and the depth of oxygen penetration 

slowly goes down to 0.002cm at steady state. In Figure 6, the system quickly reaches steady state within 

fifty seconds and oxygen only appears to diffuse less than 0.002 cm into the cell layer. Additionally, as 

consumption was not dependent on the concentration, the concentration of oxygen dropped below zero 

for a large part of the plot. As this is not physically possible, we set the lower limit of oxygen to 0.  

 

 

 

 

 

 

Figure 6. X-Y plane view of the analytical solution to the inhomogenous PDE with 

consumption for the first 100 values of n. 
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Numerical Solution 

Next, we used the Finite Differences method in to provide validation of the analytical solution of 

Equation 4. Surface plots were made using Matlab and are shown in Figures 7 and 8. 

 

 

Figure 7 corroborates well with our analytical solution (Figure 5) which yields a similar result. We 

observe that the cell layer also quickly reaches steady state within fifty seconds and that oxygen only 

diffuses about 0.002 cm into the cell layer. Again, we had to set the lower bounds of oxygen 

concentration in order to make it physically relevant. 

An X-Y profile of the above plot (Figure 8) shows that diffusion initially dominates, before consumption 

brings the system to steady state. It also shows the extent of diffusion of oxygen into the cell layer to be 

around 0.002 cm, is similar to our analytical solution (Figure 6), showing that in this case the finite 

difference method is a good approximation of the actual solution (Figure 8). 

 

Figure 7. Numerical solution to the inhomogenous PDE with consumption using finite 

differences method 
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Figure 8. X-Y plane view of the numerical solution to the inhomogenous 

PDE with consumption using finite differences method 
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Inhomogeneous PDE (Michaelis-Menten Oxygen Consumption Kinetics) 

Given the inaccuracies in the model using the constant oxygen consumption term, we instead modeled 

oxygen consumption using Michaelis-Menten kinetics to achieve the final equation of our model 

(Equation 6). 

  

  
= 𝐷

   

   −
   

    
      (6) 

Where    is the maximum oxygen consumption rate and    is the oxygen concentration at half 

maximum velocity. 

Again, our boundaries and initial conditions are the same as given by equation 1. Using the Finite 

Differences method, we numerically solved equation 6 and made a surface plot of the solution in Figure 9 

and 10. 

 

 

The system reaches steady state much faster using our final equation than when we assumed oxygen 

consumption was constant. Also, the oxygen diffuses further into the tissue, reaching depths of about 

0.018 cm. In this case, because the consumption rate of oxygen is dependent on the concentration, there 

was no need to set a lower bound on the oxygen concentration. An X-Y profile of the above plot further 

illustrates the differences between the full equation and the constant consumption equation (Figure 10). 

Figure 9. Numerical solution to the inhomogenous PDE with Michaelis Menten 

consumption using finite differences method 
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Figure 10. X-Y plane view of the numerical solution to the inhomogenous PDE with 

Michaelis-Menten consumption using finite differences method 
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Conclusions 

As expected, there was great similarity between the analytical and numerical solutions for the constant 

oxygen consumption model.  In both models, oxygen diffuses about 0.002 cm into the cell layer and 

reaches steady state within 50 seconds (Figure 6,8). However, the simplification of the oxygen 

consumption term proved to be inaccurate. This can be demonstrated by looking at the full equation plot 

in Figure 10. In the full equation, the system reaches steady state much more quickly. In addition, oxygen 

diffuses about 0.018 cm into the cell layer. Lastly, oxygen concentration never reaches values below zero.  

This occurred because the consumption term for the full equation is proportional to the oxygen 

concentration over time.  In order to show the stark contrast between the full equation and the 

simplification, we have plotted the steady states of both equations in Figure 11. As shown, the oxygen 

concentration for the simplified equation quickly reaches zero whereas the oxygen concentration in the 

full model ranges throughout the full cell layer. 

 

 

 

While values were not exact due to different oxygen consumption properties of different tissue types as 

well as assumptions we made on oxygen diffusivity, we wanted to demonstrate that the trends we found 

in our model matched the trends found in experimental data. Below we compare the non-linear ODE 

resulting from steady state oxygen consumption with oxygen consumption in rat brain slices (Figure 

12A&B). The most representative curve in Figure 12B would be curve 2, which shows the extent of 

oxygen diffusion in post-hypoxia brain tissue. This would be the closest match to our initial conditions of 

0 oxygen concentration at time t=0. 

Figure 11. Steady state solution of the full equation (blue) plotted with the steady state of 

the simplified equation (red).  
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Again, due to the differences in oxygen diffusivity and consumption rates of different cell types, we 

observe that the concentration reaches zero around 180µm, whereas literature found that the oxygen 

concentration reaches zero around 80 µm. However, the general exponential decay shown in both models 

demonstrates the validity of our model. 

 

 

 

 

 

 

 

 

 

 

Figure 12. A: Steady state solution found using finite difference method for full equation  

B: Oxygen partial pressure in slices of brain tissue against depth. (McGoron et al., 1997) 

A B 



  

14 
 

Future Directions  

As noted, there are a number of assumptions we made to allow us to analytically and numerically solve 

the model that may be invalid. The major assumption that was incorrect was that the initial concentration 

was zero.  As shown in our graphs (Figures 5, 7, 9) there is a discontinuity at time t=0 where oxygen 

concentration immediately decreases from 𝐶 = 𝐶  to  𝐶 = 0. Incorporating physiological intercellular 

oxygen concentration would make the model more accurate. 

We also did not account for the different cell layers found in skin tissue but instead assumed that the 

culture was homogenous. The ideal model for a skin graft would mirror the correct oxygen diffusivities, 

thicknesses, and consumption rates for each of these layers. In addition, the physiological intercellular 

oxygen concentration in each of these layers may be different. Thus, we could consider the implemetation 

of a series of piecewise equations that model each layer of skin. 

Lastly, we assumed that oxygen consumption was independent of other biochemical activities and 

followed a purely Michaelis-Menten reaction kinetics. However, oxygen consumption is affected by a 

number of other factors such as glucose concentration
3
, while Vm and Km values change at different 

concentrations of oxygen as cells enter different regimes of oxygen requirements as they switch from 

aerobic to anaerobic respiration
12

. In reality, glucose diffuses slower than oxygen, and cell cultures are 

more likely to be nutrient limited rather than oxygen limited. In order to account for this relationship, a 

system of PDE equations can be used instead.  
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Appendix A. Solution to Homogeneous PDE (No Consumption) 

 𝑐

 𝑥
= 𝐷

  𝑐

 𝑥 
  

B.C. c 0, t = C  

B.C.  
  

  
 L, t = 0 

I.C. c x, 0 = 0 

Solution to homogeneous PDE with inhomogeneous boundary conditions can be written as the sum of the 

solution to the homogeneous PDE with homogeneous boundary conditions plus a particular 

inhomogeneous solution. 

𝑐 𝑥, 𝑡 =  𝑐  𝑥, 𝑡  𝑐  𝑥  

Particular solution: Steady state        𝐶
 𝑡

= 0  

𝐷
  𝑐 
 𝑥 

= 0 

Integrating twice yields: 

𝑐  x =  𝑐 x  𝑐  

Applying first boundary condition 

c 0, t = C  

c = 𝑐  

Applying second boundary condition 

 𝑐

 𝑥
  , 𝑡 = 0 

𝑐 = 0 

Thus, the final equation for the particular solution is: 

𝑐  x =  𝑐  
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Homogeneous solution 

 𝑐 
 𝑡

= 𝐷
  𝑐 
 𝑥 

 

B.C. c 0, t = 0 

B.C.  
  

  
 L, t = 0 

I.C. c x, 0 = 0 

Separating the variables 

𝑐  x, t =   t .   𝑥  

𝑐  𝑥, 𝑡 =  ∑   sin  𝑥 𝑒     

 

   

 

where λ = 
       

  
 

Using initial conditions,  

𝑐 𝑥, 0 =  𝑐  ∑   sin  𝑥 

 

   

 

  = ∑
2

 
∫ 0 − 𝑐  sin  

 2  1  

2 
𝑥  𝑥

 

 

 

   

 

= −
2𝑐 
 

∫ sin  
 2  1  

2 
𝑥  𝑥

 

 

 

=
2𝑐0
 

  
2 

(2  1) 
  

=
 𝑐 

 2  1  
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And the final solution is 

𝑐 𝑥, 𝑡 =  𝐶  ∑   sin  𝑥 𝑒     

 

   

 

where λ = 
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Appendix B. Solution to Inhomogeneous PDE (Constant Oxygen 

Consumption) 

We developed a PDE model that accounted for oxygen diffusion and consumption. For this model we had 

a constant oxygen consumption term. 

 𝑐

 𝑥
= 𝐷

  𝑐

 𝑥 
−      

B.C. c 0, t = C  

B.C.  
  

  
 L, t = 0 

I.C. c x, 0 = 0 

Where 𝐶 is the oxygen concentration, 𝑥 is the position through the cell layer, 𝐷 is the diffusivity, and   is 

the constant oxygen consumption rate. 

Solution to inhomogeneous PDE with inhomogeneous boundary conditions can be written as the sum of 

the solution to the homogeneous PDE with homogeneous boundary conditions plus a particular 

inhomogeneous solution. 

𝑐 𝑥, 𝑡 =  𝑐  𝑥, 𝑡  𝑐  𝑥  

Particular solution: Steady state        𝐶
 𝑡

= 0  

𝐷
  𝑐 
 𝑥 

−  = 0 

∬
 
2
𝑐 

 𝑥2

 

 

 x = ∬
 

D
 x

 

 

 

Integrating twice yields: 

𝑐  x =  
 

2D
x  cx    

Applying first boundary condition 

c 0, t = C  

𝐶 = 
 
2D

02 − c  0   
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 =  𝐶  

Applying second boundary condition 

 c

 x
 L, t = 0 

0 =
  

𝐷
 𝑐 

𝑐 =  −
  

𝐷
 

Thus, the final equation for the particular solution is: 

𝑐  𝑥 =  
 

2𝐷
𝑥 −

  

𝐷
𝑥  𝐶  

Homogeneous solution 

 𝑐 
 𝑡

= 𝐷
  𝑐 
 𝑥 

 

B.C. c 0, t = 0 

B.C.  
  

  
 L, t = 0 

I.C. c x, 0 = 0 

Now that we have homogeneous boundary conditions, we can apply separation of variables 

See Appendix A for mathematical calculation using separation of variables 

𝑐  x, t =   t .   𝑥  

𝑐  𝑥, 𝑡 =  ∑   sin  𝑥 𝑒     

 

   

 

where λ = 
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Full Solution  

𝑐 𝑥, 𝑡 =  𝑐  𝑥, 𝑡  𝑐  𝑥  

Applying initial conditions 

I.C. c x, 0 = 0 

𝑐 𝑥, 0 = 0 = 𝑐  𝑥  𝑐  𝑥, 0  

By orthagonality of the basis functions, we solve for   . 

  =
2

 
∫ 0 − 𝑐  𝑥  sin  

 2  1  

2 
𝑥  𝑥

 

 

 

= −
2

 
∫(

 

2𝐷
𝑥 −

  

𝐷
𝑥  𝐶 ) sin  

 2  1  

2 
𝑥  𝑥

 

 

 

= −
 
 𝐷

∫𝑥2sin(
(2  1) 

2 
𝑥) 𝑥

 

0

 
2 
𝐷

∫𝑥sin(
(2  1) 

2 
𝑥) 𝑥−

2𝐶 

 

 

0

∫ sin  
(2  1) 

2 
𝑥 𝑥

 

0

 

Using integration by parts, 

  =  
1    

𝐷 2      
−

 𝐶 

2    
 

And the final solution is 

𝑐 𝑥, 𝑡 =  
 

2𝐷
𝑥 −

  

𝐷
𝑥  𝐶  ∑   sin  𝑥 𝑒     

 

   

 

where λ = 
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Appendix C: Matlab Code for Full Equation 

C0 = 0.2; %umol/cm^3 
D = 6.6*10^-6; %cm^2/s 
L = 0.02;%cm  
T = 100; %sec 
Km = 0.075; %uM 
Vm = 0.059; %uM/s 

  

  
dx=(L)/100; 
dt=1/500; 
xmesh=0:dx:L; 
tmesh=0:dt:T; 
nx = length(xmesh); % number of points in x dimension 
nt = length(tmesh); % number of points in t dimension 
stepsize = D * dt / dx^2; % stepsize for numerical integration 
sol_fd = zeros(nt, nx); 
sol_fd(:,1)=sol_fd(:,1)+ C0;  

 
for t = 2:nt 
    for x = 2:nx-1 
        sol_fd(t,x) = sol_fd(t-1,x) + stepsize * ... 
            (sol_fd(t-1,x+1) - 2 * sol_fd(t-1, x) + sol_fd(t-1,x-1)) - ... 
            Vm*dt*sol_fd(t-1,x)/(Km+sol_fd(t-1,x)); 
    end 
    sol_fd(t,nx) = sol_fd(t, nx-1); 
end 

  
figure(1) 
colormap(jet) 
surf(xmesh,tmesh,sol_fd, 'EdgeColor', 'none') 
title('Finite differences for full equation') 
xlabel('x [cm]') 
ylabel('t [s]') 
zlabel('c(x,t)[mM]') 

  
figure(2) 
plot(xmesh, sol_fd(nt,:)) 
title('Steady-state with consumption') 
xlabel('x [cm]') 
ylabel('c(x)[mM]') 

 


